tiomship exists between the carcinogenie and the antitamor potentiatities of the aryl component. Stacties by (ows and Kemmanay have shown that (9,10dimethytanthracene is a moderately artive catcimeng in mier. wheress henz $\mid a]$ anthracenc and 10 -methytphenanthrene exhibit no more than slight warenogenis activity. Since certain methyl-mbestituted benz $|a|-$ anthracenes are potent carcinogens. We propere tor synthesize the sulfur and nitrogen mostard derivatives of sereal of these polycyclie anmatic componands and determine the existene of amy raremogenic-aramostatice correlations.

Cros-linking ability is generally comsidered to be a requirement for a tumor-inhibiting alkylating agent. This condition is fulfilled by the bifunctional nitrogen and mulfur musturd.. Several of our monofunctional
 1. Kennatm, N. M. Kemanay, and 1. L. Wirren, Chere Ris., 2, 10: (1012).

 able that aros-tinkines e:an lue rompleted be intre

[^0]
Acetylenic Carbamates. A New Class of Potential Oncolytic Agents

The Lilly Resecuch Lublorutorise, Indimmpolis, Intimint
Piveited Jone $3(1$, Itaif

Abstract

 mice. Oral as well as parenteral artivity of these compund in demonstrated. Smotmre-activity relatiomship are discussed.

An investigation of the intramolecular reactions of aretylenic compounds ${ }^{1-3}$ led to the synthesis of $1,1-\mathrm{ch}-$ phenyl-2-propynyl carbamate. This compound showed interesting activity in our cancer screen. On this basis, a series of diaryl carbamates was investigated for antitmmor activity. In contrast to that reported for 1,1-diakyl-2-propynyl carbamates, 4.5 these were void of any hypnotic properties. However, untike the 1,1-dialkyl compounds, this series demonstrated repeat able activity against a series of mouse neoplasms.

Since these compounds were most active against the myelogenous leukemia C1498 and the plasma-cell
 relative efficacy of the compounds as antitumor agents. Although most of the carbamates showed activity in these tests, certain variations in structure appeared to promote optimum antitumor effects.

Although the preliminary activity of there componnds was established by the intraperitoneal route of thempy, other routes were explored. The orat activity was of particular interest, inasmuch as it is more tesirable to administer oncolytic agents for chinical use by the oral route. Studies were earried out and comparisons made by both the intraperitoneal and oral rontes. More extensive studies are in progress inchading delayed therapy experiments, broad-speetrum

[^1]tumor studies, tissue locatization in mice. hemopoetis effects, and general toxicological effects.

Chemistry.--The preparation of the carbamate by : modified procedure described by Mehta and (atlin' is outhed in Scheme I. The 1,1-diary-2-porpyn-1-ak.
scheme !

prepared by well-known wocedures from diarylketonce. were treated with phenyl chloroformate using pyridinc as an acid acecptor in dichloromethane to give the phenyl carhonate intermediate. In the presence of an amine, this intemediate was converted to the carbamate and phonot. The curude products were purified by erystallization to give yietds of $\overline{3}-30 \%$. Xo effort was made to obtain optimum yiedds. The X-monosubstituted earbamates could be prepared directly from the 2 -propyob-ok hwing an alkyl isocyanate. The allyl earbamates were obtained by catalythe hydrogeniafion of the apmonriately sulsituted 2-propynyl carhamater.

All products mentioned above are listed in Table I.
Pharmacological Methods.-Because of the obvious physical limitations, only two of the 21 experimental tumor systems maintained in these laboratories were employed for preliminary antitumor testing of this series of compounds. The two systems were selected because of their responsiveness to the carbamates, and the fact that both are used to predict useful candidates for clinical evaluation. Those carbamates showing a high degree of potency against these two systems were then subjected to more extensive studies.

One of the tumors, Xō̄63, is a slow-growing, plasmacell tumor, the other, an atypical, myetogenous leukemia known as C1498. Procedures for animal-tumor testing in our laboratories have been previously described by Johnson, et al. ${ }^{6}$ However, in brief, for the solid tumor, a tumor fragment was implanted subcutaneously by trocar in $\mathrm{C}_{3} \mathrm{H}$ mice and after 72 hr , treatment was initiated and continued until a total of 10 injections had been given. Two-dimensional measurements were taken after the tenth injection; the activity is reported as a comparison of the tumor sizes of test animals to that of saline controts. A 100% activity would mean that no measurable tumor was present in the test animals at the end of the treatment period. This plasma-cell tumor exhibits some of the same characteristics associated with multiple myeloma in man, including the presence of an abnormal protein found in the serum from animais bearing the disease.

The other test system, the myelogenous leukenia, is maintained in $\mathrm{C}-57 \mathrm{~B} 1 / 6$ mice in the solid form. The test animals are injected with a tumor cell homogenate. Inoculation was by the intraperitoneal route at known, standard-cell concentrations. Inoculated animats usually survive for $14-18$ days. Treatment was initiated 24 hr after inoculation, and a total of ten treatments with the compound was given. Activity was determined by prolongation of life of treated animals u. that of saline controls. Those living for 45 days were considered "cured" and were designated as indefinite survivors. These were not calculated in the per cent activity. This tumor system is naturally resistant to many known clinically useful anticancer agents.

The insolubility of the carbamates in most vehicles used for antitumor testing, acacia, saline, sesame oil, and carboxymethylcellulose, did not prevent their effectiveness as antitumor agents. Suspensions of the carbamates using 1:10 dilutions of Emulphor ${ }^{187}$ were used successfully throughout the series.

Prior to testing the compounds against the tumor systems, subacute toxicity studies were conducted using normal Swiss ICR mice. Compounds were administered daily at four different levels for 5 days. Antitumor testing was then initiated at the maximum tolerated level and at two lower levels, usually one-haif and one-fourth of the high dose. Dose-response studies on the compounds demonstrating the most potent antitumor properties in the primary screen were then undertaken. In this study, dose levels were given that usually determined the minimum effective dose, and then dosage was increased until evidence of toxicity was seen. The toxic effects were noted by carly deaths of the test animals and weight loss as compared to con-

[^2]trol animals. Visual observations of the general appearance of the animals such as lack of mobility and rough coat were helpful in determining toxicity of the compound tested. The dose levels for maximum antitumor effects were obtained from the dose-response results. These are reported in Table I. For those compounds not included in the extended tests, the best activities indicated by the initial screen are reported.
Structure-Activity Relationships.-Antitumor activity against the X5553 and C1498 systems was found for almost all of the 1,1-diaryl-2-propynyl carbamates tested. However, for maximum potency, certain structural requirements were found to be necessary. To help in assessing the importance of each functional portion of the molecule, the carbamate structure was divided into three main areas--the ethynyl (A), the 1,1 substituents (B), and the carbanoyt portion (C)and the effect of structural changes on antitumor ac-

tivity is discussed separately for the three areats. The activity discussed here will refer to the results reported in Table I.

The acetylenic group (A) of the molecule was found to be essential to obtain potent antitunor effects. Reduction of this group to the ethylenic derivative gave compounds with much less activity (compare 82 and 83 with 20 and 24, respectively). Substitution on the terminal position of the triple bond did not appear to alter the antitumor effect significantly (compare 79 and 80 with 4).

One of the important features of portion B was that R and R^{1} must both be aromatic groups for the carbamates to show significant antitumor effects. Compounds that deviated from these requirements such as $\mathbf{1}, \mathbf{2}$, and $\mathbf{3}$ showed little if any effects. When R and R^{1} were both phenyl, compounds with varying degrees of potencies were obtained depending upon substituents on the remainder of the molecule. Although the effects of substituents on these phenyl groups upon potency were of a lesser degree, certain variations in this area were more beneficial than others. In general, halogen substitution on the phenyl rings gave compounds that demonstrated good antitumor effects. Of the group, chloro, bromo, and iodo, the p-chlorophenyl derivatives were the most beneficial in promoting antitumor activity. Of particular interest were the fluorophenyl derivatives ($52,54,58$, and 59), since they were the most potent of the halophenyl compounds. Other substitution on the phenyl ring such as methyl, nitro, trifluoromethyl, and phenyl did not seem to enhance activity. When R was phenyl and R^{1} was heteroaromatic ($\mathbf{7 2}$ and 76), less potent compounds were obtained. However, when R^{2} was α - or β-naphthyl, potency was retained (68-70). The same was true when the R and R^{1} were joined together forming the fluorenyl moiety (77 and 78).

Tabici I

$1: 1$													
（\％ill					An。		＇，cia	Inl	$\cdots \mathrm{fr}$		116，we．＂	Promor	n
10．	1 R	$1{ }^{1}$	$1{ }^{2}$	12	${ }^{6}$	1 momba	\because	11	1	11	Mrker	S．2．0．3	（1）118
$1{ }^{\prime \prime}$	（11）	（1CH）	11	11	Gitiolis	combline	11． F ． 1	1．9\％	11．32	［） 26	（ii）	$1{ }^{1}$	．
\because	C61官	（1）	11	11	40－4：	CiHaNO．	（6） 8.	$\therefore 8.8$	（6）． 98	5．84	4.5	0	1
3	C61\％	11	11	11	$8\left(1-88^{i}\right.$		（i8．）${ }^{\text {a }}$	． 18	18.48	5．1：4	： 0	0	11
1	$\mathrm{CHF}_{6} \mathrm{H}_{5}$	（6611；	11	H	138－140	$\mathrm{Cl}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$	7i．4i	5． 22	76.48	5．19	35.5	$8: 3$（ib）	
，	C．ill	$\mathrm{C}_{6} 1 \mathrm{Il}_{5}$	（11：	H	151－152	$\mathrm{CH}^{1 / 1 H_{5} \mathrm{NO}_{2}}$	－ 6.96	－1．90	76.98	2． 81	15	（i4） 10 ）	11：11，
（1）	Crim_{5}	C611 ${ }^{\text {b }}$	CaH_{5}	11	108－109	$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{NO}_{2}$	78.39	c． 13	－7．22	6.21	30	$\square_{7}(8)$	115（2）
－	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CHECHMCHE	11	90－08	Cuminos	78.33	5． 88	：8．45	6.08	18	$100(9)$	10%
8	（．6115	$\mathrm{C}_{6} 1 \mathrm{IH}_{5}$	$\mathrm{CH} \mathrm{C}=\mathrm{CH}$	11	125－127		78．87	－． 22	78．91	5．31	1．5	$08: 8$	81
4	（i） 116	C．ill	Cychoropy	11.	118－120	Cighionos	78．3\％	－i． 88	：8．00	6.17	1.5	0	： 3
10	Cills	（ 611_{5}	$\left(11_{2} \mathrm{CH} 2 \mathrm{OH}\right.$	11	110－112	Connonos	3300	5） 81	73．24	6.0 .4	15	0	1
11	（ $\mathrm{CiH}_{1} \mathrm{l}_{5}$	（6115	CHECH13	11	103－102	（\％314， NO_{2}	80.91	580	81．14i	5． 84	30	1	11
12	CbH_{5}	$\mathrm{C}_{6} 11_{6}$	CH5CHEC6H5	11	121－129	$\mathrm{Ca}_{3} \mathrm{H}_{4} \mathrm{NO} \mathrm{O}_{2}$	81.11	5	81.10	6.08	（i）	17	$\because 1$
1：	$\mathrm{C}_{1} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cyphomerd	11	142 15	$\mathrm{Cr}_{4} \mathrm{HaS}_{4}$	78．97	6． 63	－8．69	6．75	1.7	（1i－（b）	1．73；
11	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} 611_{5}$	Cychorex	11	1100161	$\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{NO}_{2}$	70．2．9	（i． 95	－9． 10	－．12	7．	（16） 9	18．7
17	Coforb_{5}	CbH_{5}	Cyclohepes	11	162 165	C－2 $\mathrm{H}_{25} \mathrm{CNO}$	－0．8）	7．25	70．63	－． 48	1.5	100 ！	1：18
16	CHH_{5}	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cychooty	11	148－150	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NO}_{2}$	－9．5．	－53	79．45	7.48	30	10016）	$\because 1$
$1:$	CiH_{6}	$\mathrm{C}_{6} \mathrm{H}$	CHoCHzCHEN（CHoy	11	98－100	$\mathrm{Cr}_{2} \mathrm{H}_{4} \mathrm{Na}_{2} \mathrm{O}$		7.19	－4．！1	－ 47	1.7		1.7
18＇	CiH_{3}	$\mathrm{C}_{6} \mathrm{ll}_{5}$	4． $\mathrm{ClCH}^{\text {a }}$	11	81.90	$\mathrm{CO}_{4 \mathrm{H}_{6} \mathrm{CINO}}$	3.02	1.15	－2．87	4.51	1.00	$30110)$	： 4
19	cill	（ CiH$)_{5}$	NH：	11	10\％－10		21 16	5.29	T2 10	5．46	30	$(1$	± 0
20	Cill	C． $11{ }_{5}$	CH	CH_{3}	1012 104	Crhmino．	－7，3\％	1： $1: 3$	\bigcirc	6.18	1.	（9）（10）	18
21	COH_{5}	（ $\mathrm{Cl} \mathrm{ll}_{5}$	－（1）11）4－			C，HmNO．	－8．fit	$1: 9$	－8．60	6． 23	15	100481	133
2：	CoH_{5}	（rins	－©HmCHOOCHECHE		1．4：－1．1－1	O\％H\％	－1．7	5．917	－1．02	4．32	15	（10）（1）	$\therefore 1$
2.1	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{6} \mathrm{ll}_{5}$	－ $\mathrm{CH} \mathrm{H}_{5}$		158161	Crnan	－8．9：	6． 6	－8．81	6． 0	160		0
21	$-\mathrm{ClC}_{6} \mathrm{Cl}_{4}$	$\mathrm{Cb}_{6} \mathrm{HF}_{5}$	11	11	1．10．11：	Cuhmelios	6.25	12\％	16． 27	1.41	40	$10016)$	101
\cdots	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	CiH_{5}	（11\％	11	153．－10n	$\mathrm{CrH}_{14} \mathrm{ClNO}_{2}$	18.11	1． 71	1：8．26	4.71	30	116 18）	（6） 11
26	－ $\mathrm{ClC}_{6} \mathrm{Cl}_{4}$	$\mathrm{C}_{6} \mathrm{HL}_{5}$	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	11	$106-100^{1}$	${ }^{1} \mathrm{CH}^{\mathrm{H}_{16} \mathrm{ClNO}_{8}}$	7（1．0．	10%	（13． 86	5．21	10	87 （2）	182（2）
2	1． $\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} 115$	Cymbexy	11	1：0）	（211mClno	－1．82	（i） $1: 3$	－1．80	6．12	75	100 （b）	$1!6$
28	4． $\mathrm{Cl}_{6} \mathrm{H}_{4}$	Cr_{5115}	（ H_{1} ，	（11）	135－137	Crhisator	（68． 90	5 1：	（i8． 41	－11	30	100 （8）	（i2）
29	$4-\mathrm{Cl}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} 11{ }^{\text {d }}$	－1\％ 1124 －		！11） 12		－0， 0	． 313	70.31	5． 88	34	114（10］	1265：
30	${ }_{3} \mathrm{ClCH}_{4}$	$\mathrm{CH}_{6} \mathrm{H}_{5}$	11	11	11：5117	Cibhacinos	ti7． 27	4．：3	tit． 0	4.41	（1）	1	${ }^{1}$
314	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	（ $6.1 \mathrm{H}_{5}$	ClH_{3}	11	141－1．12	$\left(: \mathrm{H}_{4} \mathrm{ClNO}\right.$	68． 11	1．70	倍． 96	4.92	90	1000	：
3：	$\mathrm{S}^{-\mathrm{ChC}_{8} \mathrm{H}_{4}}$	CiHF_{5}	C11s	CH．	$5^{-9}-9$	C－ $\mathrm{H}_{68 \mathrm{Cl}} \mathrm{NO}$	（i8．91）	－1：	（8）， i^{2}	3.01	10	100 （1）	ii
：3，	\bigcirc－ $\mathrm{ClO}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	11	11	160－1：1	（611：2ClNo．	65.25	123	65.48	1．1！	（1）	820	0
$\because 1$	$2-\mathrm{Cl}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CHs	$\mathrm{ClHs}^{\text {a }}$	154－1：50	$\mathrm{Cishrax}^{8}$	6890	－1． 13	（i8． 91	5．12	10	（河（7）	21
35.5	4－ClC6 H_{4}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	11	11	131－133	$\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{Cl}_{2} \mathrm{NO}$ \％	$60^{10.02}$	a 46	（60．19	3.66	（ii）	013	(16)
36	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$4 \mathrm{ClCl}_{6} \mathrm{ll}_{4}$	CH	11	1：3－1：4	$\mathrm{CinH}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	1it 01	314	60.98	3.91	21	100 s9\％	111：17
$3:$	1． $\mathrm{ClC}_{6} \mathrm{H}_{4}$	4－ $\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	（113	162－16． 16	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}$	12.08	＋1．34	62．1t	1． 0^{4}	60	10018	81
：$\%$	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	$165-169$	$\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{Cl}_{2} \mathrm{NO}^{\text {－}}$	60.02	$\therefore 16$	00.34	3.64	150	$2+(10)$	$1)$
$: 11$	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	ClH_{3}	Cris	151－1\％	$\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{CH}_{2} \mathrm{NO}_{2}\right.$	62.08	1．34	62.19	1．011	150	7．1i8）	11
111	$3.4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{5} \mathrm{H}_{5}$	－（ $(111)_{4}-$		121－123	CruH12 $\mathrm{Cl}_{2} \mathrm{NO}_{2}$	4.18	i． 5	0．4．25	4.81	$1: 1$		26
－11	$\because \mathrm{C}$－ $\mathrm{Cl}_{4} \mathrm{C}_{6} \mathrm{H}_{3}$	C $6 \mathrm{H}_{6}$	11	11	1633165		601． 12	a 46	60.28	3.70	100	0	0
12	$2.4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{66} \mathrm{H}_{5}$	CH_{3}	（11）	155－159	$\mathrm{C}_{8} \mathrm{Hl}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{4}$	（i2 08	4 4：1	（i2． 31	$11!$	150		1
$1: 3$	$3.4-\mathrm{Cl}_{6} \mathrm{C}_{6} \mathrm{H}_{3}$	${ }_{4} \mathrm{ClC}_{61} \mathrm{H}_{4}$	H	11	154－156	$\mathrm{CiOH}_{10} \mathrm{Cl}_{3} \mathrm{NO}_{4}$	Firl 19	2.8 .1	24．12	3.11	150	88（10）	1
11	2．4－ $\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4－ClC6 ${ }_{6} \mathrm{H}_{4}$	H	11	115－14t	$\mathrm{C} \mathrm{BH}_{4} \mathrm{Cl}_{3} \times \mathrm{O}_{2}$	51．1！	$\because 84$	$\therefore 1.35$	3.01	（ii）	O	＂
15	$4-\mathrm{HrC}_{6} \mathrm{H}_{4}$	C6115	H	11	141－14：3		is． 24	366	88．99	3.83	（i）		12011
46	4－13－C．6 H_{4}	$\mathrm{C}_{6} 111_{6}$	Cl^{1}	11	119－1．5｜		5113：	10	－5） 50	1．80	00	$100(8)$	$8: 12)$
17	$4-8 \mathrm{CCO}_{6} \mathrm{H}_{1}$	$\mathrm{C}_{6} \mathrm{Cl}_{5}$	（＇yulthexyl	11	161－162	Cmmbray	（61．08	\square	13．1．13	－11	1.50	39）（3）	11.5
18	－ $1 \mathrm{PrC6} \mathrm{H}_{4}$	$\mathrm{Cr}_{6} \mathrm{H}_{3}$	（ 1113	Cls	14514	（：x116Brate	（ix1． 3 F	1．811	（6） 61	1.61	： 6	8781	\because
111	$4-1 \mathrm{CrCoH}_{4}$		－－（ $\left.\mathrm{CHz}_{4}\right)_{4}$		10：－10．	$\mathrm{CH} \mathrm{H}_{5 \mathrm{BrNO}}^{2}$	92．51	17	12.88	1．75	10	100 （9）	ini
（1）	$3-1 \mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	$127 \quad 129$	（ \because HebrNos	As． 20	： B ，	18．8．31	$\therefore 80$	$1(1)$		\therefore i
． 11	$3-13 \mathrm{rC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} 1 \mathrm{IF}_{5}$	（113	（ H	1．11．11：	（ $\mathrm{OH}_{10 \mathrm{~B}}$ BrNO：	（61．35	1.50	（6）A2	41.	150		－i
－2	1－10 $\mathrm{CH}_{6} \mathrm{H}_{4}$	（．611）	11	11	191－101		71.3%	114	－1． 14	1.27	\because	1（10） 8 ）	111：：1）
\％ 3	1－ $\mathrm{PC} \mathrm{C}_{6} 1 \mathrm{I}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	（ $112 \mathrm{C}=\mathrm{C} 11$	11	121－123		－1．25	1.04	51.18	1.39	15	5 me （10）	85 （1）
－ 1	4－ $\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} 11_{0}$	（y）dolexyl	11	168－170	（ $211 \times \mathrm{NO})_{2}$	－i． 10	1， 31	－．5． 43	C． 11	10	100 （2）	$018(11$
－3	4－FC614	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CHa}^{\text {a }}$	$111{ }_{3}$	121－123	Combrioz	－2．11	$5+2$	－2．7	－1．42	15	1000101	207 （i）
Iif	4－ $\mathrm{FC} \mathrm{C}_{6} \mathrm{IH}_{4}$	$\mathrm{C}, 11_{5}$	（（110）${ }_{\text {－}}$		131－13：	（ $\mathrm{CH}_{1} \mathrm{FHNO}_{2}$	－1．28	a． i 1	－4．13	5.84	± 0	100891	14：（6）
π	4－15 CH_{4}		11	11	121－123	C611， $\mathrm{CH}^{\text {a }}$	66.90	： 86	（6）．91	1．14	\therefore	10 Cl	¢ $\mathrm{g}_{\text {（1）}}$
88	$\mathrm{A}_{-1 \mathrm{HC} \mathrm{CH}_{0} \mathrm{H}_{4}}$	＋－1 $\mathrm{Cl}_{6} \mathrm{CH}_{4}$	Cyctulex 1	11	17：1；	CHanmo	－18	5－：	71.2	$\therefore \quad \therefore$	i	10118	116
\％1	－ $\mathrm{FC} \mathrm{CH}_{4}$	$4-\mathrm{FC}_{6} \mathrm{CH}_{4}$	C11：	$\mathrm{ClF}^{\text {c }}$	114．1．14i		64． 5 \％	1.80	188．5	1．52	1．7	100 （1）	100
（ii）	－1． $1 . \mathrm{C}_{6} \mathrm{H}_{4}$	＋－ $\mathrm{FC}_{6} \mathrm{H}_{4}$	$-(\mathrm{CH2})_{4}-$		11：3－1／17	CmHarino	－0．3：	－1） 11	70．6i	－ 3 3 3	81	104 （i）	1
（i）	4－1．6． H_{4}	$\mathrm{C}_{6} \mathrm{H}_{1}{ }_{5}$	11	11	1＋1－146	C：614nsoz	508	3.20	51.22	3.83	45	100 （111）	1116
（i2）	$4-\mathrm{CHO} \mathrm{Cl}_{4}$	（ $\mathrm{n} 1 \mathrm{l}_{5}$	11	11	14，4－115	Crinfan	（0： 07	$\therefore .79$	（03． 86	3.80	100	－	${ }^{1}$
（is）	－ $1-\mathrm{Cl}_{8} \mathrm{C}_{6} \mathrm{H}_{4}$	（6） 11	C11：	（11i	1：3－1：8			1.51	（ii）． 8.4	4.81	．．		
（i．）	1． $\mathrm{O}^{\mathrm{Na}} \mathrm{Cl}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	11	11	16．5－165	$\mathrm{CbHaN} \mathrm{O}_{4}$	（6．2．81）	1.08	（6）． 02	1.14	（i）	4	
（is）	$\mathrm{I}^{-\mathrm{CH}_{4} \mathrm{C}_{6} \mathrm{H}_{4}}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	128130	Calliswo．	76.96	\％${ }^{-1}$	－6．8． 1	－11	17	11	0
（ii）	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{Cb}_{6} \mathrm{H}_{5}$	11	11	154156	$\mathrm{CaH} \mathrm{Hinc}_{\text {NO }}$	76.08	－1：	80.2	5 17	15	－．	1＋1 3
（ii）	$\mathrm{H}^{-\mathrm{C}_{6} \mathrm{FH}_{5} \mathrm{C}_{6} \mathrm{H}_{4}}$	（ $\mathrm{i}_{1} 1 \mathrm{l}$	（11：	CH_{3}	$145-177$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2}$	81.10	－1．45	81.16	5.90	80	．．．	81
tis	$2-(1417$	${ }^{\text {C6}} 11_{6}$	11	11	163－165	Cmu15NO：	811.1	$\therefore 02$	79.88	5.03	12\％	100%	85
（6）		C6115	C11：	CH	111－11：	（ O	80.21	－ 8.81	80.11	6． 85	30	$100(8)$	164 （i）
－1	$\cdots-\mathrm{C}$＋11\％	C，115	$-\left(\mathrm{CH}_{4}\right)_{4}$		8：1－85	CuHaNO	81． 10	5：	81.21	0.19	45	100 （i）	1.51 （1）
$\div 1$	$1-1 \mathrm{CH}_{1} \mathrm{H}_{7}$	（ $\% 11 \mathrm{l}$	11	11	15－178	－ 9115 NO	－0，-1	त 112	－918	5． 011	30	$100\langle 5$	\because
\because	$2-6.514 \times$	$(6))_{5}$	11	11	1：31．1：7	C， $111 \ldots \mathrm{Na}$（1）	－111	：ma	71.80	－1．16	1511	1000	11
7：	$\underline{2}-\mathrm{c} 11 . \mathrm{N}$	Cibls，	C11	11	112．11．7	（ mblncto	I－16	$\therefore 30$	720	－ 6	（i）	（12）	0
$\cdots 7^{i j}$	$2-\mathrm{CH11} \mathrm{~N}$	$\mathrm{CaHF}^{\text {a }}$	（\％115	11	11.11 .121		－6． 81	4.18	－688	7 12		－	
7．	$2-6.541 . N$	（ 0111	（1） 11	C11：	12112	13110 Nat	$\therefore \mathrm{Br}$	5．－5	7 O	6． 010	（10）	514， 8 \％	0
io	2 － 6110	1．113	11	11	11\％11：		（il） a	1．82	Gi \％ig	119	：100	11	＂

${ }^{a}$ A total of ten treatments were given, by daily injections intraperitoneally, at each dose level indicated, and the reported activities of these compounds against the two systems are the results of a specific dose-response test for each compound and should be considered in a qualitative manner in comparing relative potencies. Activity must be greater than 20% to be considered significant. Myleran at $30 \mathrm{mg} / \mathrm{kg}$ inhibited the X5563 system 100% and did not inhibit the C 1498 system. H_{2} at $0.15 \mathrm{mg} / \mathrm{kg}$ did not inhibit the X 5563 system but gave a 34% prolongation of life against the C1498 system. Cytoxan (cyclophosphamide) at $50 \mathrm{mg} / \mathrm{kg}$ inhibited the X 5563 system 100% and the C 1498 system 39%. ${ }^{6}$ Those compounds with R^{2} and R^{3} being hydrogen were made by method A as described in the Experimental Section. The compounds with one or both R^{2} and R^{3} being alkyl were prepared by method $B .{ }^{c}$ Lit. ${ }^{4} \mathrm{mp} 66-68^{\circ}$. ${ }^{d}$ The number given is the per cent inhibition of the tumor, and the number in parentheses indicates total survivors out of ten at the end of the treatment period. ${ }^{e}$ The number given is the per cent prolongation of life of treated animals vs. saline controls and the number in parentheses is the number of animals surviving for 45 days from date of inoculation and are considered cures. These animals are not calculated in the per cent activity. f W. Logemann, et al. [Farmaco (Pavia), Ed. Sci., 8, 406 (1953)] report mp 87°. o Made by method C as described in Experimental Section, ${ }^{h}$ Anal. Calcd: $\mathrm{N}, 4.98$. Found: $\mathbf{~}, 5.18$. ${ }^{i}$ Intermediate described in method A recrystallized from benzene-petroleum ether (bp $3 \overline{5}^{-} 60^{\circ}$).

Table II
Intriperitoneat vs. Oral Treatment Using Compound 14

Tumor system	Dose level. $\mathrm{mg} / \mathrm{kg}^{a}$	Route of admin	$\begin{gathered} \text { Ar wt } \\ \text { change, } \mathrm{T}, \mathrm{C} \end{gathered}$	$\begin{gathered} \% \\ \text { activity } \end{gathered}$	$\begin{aligned} & \text { Indefi- } \\ & \text { nite } \\ & \text { sur- } \\ & \text { vivors } \end{aligned}$
C1498	7.5	Ip	-1.5/1.9	61	0
	10.0	Ip	-0.4/1.9	83	1
	12.0	Ip	-2.8/1.9	98	3
	15.0	Ip	-2.7/1.9	0	7
	15.0	Oral	-3.6/0.5	107	1
	20.0	Oral	-2.6/0.5	99	2
	25.0	Oral	-3.7/0.5	35	4
X 5 563	17.5	Ip	-0.9/2.0	92	
	10.0	Ip	-1.2/2.0	95	
	12.0	Ip	-3.1/2.0	100	
	15.0	Oral	-2.0/1.2	97	
	20.0	Oral	-2.2/1.2	100	
	25.0	Oral	-2.7/1.2	100	

${ }^{a}$ The dose was administered once daily for 10 days.
Definite requirements also have been demonstrated for the "C" portion of the carbamates. If this portion was hydrogen, e.g., the 1,1-diaryl-2-propyn-1-ols, no significant antitumor effect was found. This was true for the phenylcarbonate intermediate 85 and the thiocarbamate 81. It could therefore be concluded that the carbamoyl portion $\mathrm{O}=\mathrm{CN}<$ is necessary to produce compounds with significant activity.

A comparison of the R^{2} and R^{3} substituents revealed that they could be varied widely with high potency being maintained. These variations included compounds where R^{2} and R^{3} were hydrogen, the N -methyl, N -allyl, N-propynyl, and N,N-dimethyl derivatives, and compounds where the substituents with the nitrogen formed a pyrrolidine ring. However, the N-phenyl derivative (18) was much less effective.

When R^{2} was hydrogen and R^{3} cyclohexyl (14), very high potency was found. This group was particularly effective when R and R^{1} were p-fluorophenyl (58). Also, other $\mathrm{N}^{-c y c l o a l k y l}$ groups such as cyclopentyl, cycloheptyl, and cy clooctyl (13, 15, and 16) gave compounds of high potency.

Intraperitoneal v s. Oral Treatment.-In Table II, a comparison of intraperitoneal and oral administration of compound 14 against the X 5563 and C1498 systems is given. In both systems, it appears that an equivalent antitumor effect can be seen using oral doses approximately twice that used by the intraperitoneal route. Other carbamates have also demonstrated this type of oral activity.

Experimental Section ${ }^{8}$

1,1-Diaryl-2-propyn-1-ols were prepared by known procedures ${ }^{8}$ from the appropriately substituted benzophenones and were

[^3]

1,1-Diaryl-2-propynyl N,N-Disubstituted Carbamates. 'I'lıי
 111: membends A. B, :1nd ('

Method A. 1-(4-Bromophenyl)-1-phenyl-2-propynyl Carba-

 'lonhle I, 45).

Method B. 1-(4-Bromophenyl)-1-phenyl-2-propynyl 1-Pyrrolidinecarboxylate. The same prowedure wis used ar alowe a

 :Tinlle 1. 49 :

Method (. 1,1-Diphenyl-2-propynyl N-Methylcarbamate. A

1,1-Diphenylallyl \mathbf{N} N-dimethylcarbamate. A sulninn ,il

 *

 Tlahle I. 82

 carbamate (Tihlle I, 83:

Acknowledgment. The microanalyses were performed ly Meows. William Brown, Howard Hunter, Chartes Ahbrook. and David Cline. Appreciation is given to the following persom for assistance in texting there "ompounds in the anmat-tumor sereen: Atesers. Pant Craig, Edward Prither and James Mattingly and Ans Virginia Bothwell and Maurie -ltcocely. Manty of the intermediate ermanande were prepared by Mr. Lawrence Whitc.

The 6-Deoxytetracyclines. VII. Alkylated Aminotetracyclines, Possessing Unique Antibacterial Activity

Abstract

Sitration of (i-demethyl-fi-deoxytetracyedine (I) in strong acid remuts in clectrophilic substitution at the 7 : and 9 positions. ${ }^{1}$ Subseguent reactions of these substane to form :mino, diazonium, wad further trunsformation products have been the subject of frevions papers from these and other laboratories.:

In the conse of new investigations into the chemistiy of these modified antibioties in the hope of further cuhameng the pronounced antibacterial antivity powsessed by several members of this sories, of to find new type of : mibacterind activity (ie. . broadened spectrum (f) :utivity) we had occtision to examinc the reductive allkytation of these substances.
Reductive methylation of 7 - or 9-nitro- (II or IIH) (1) -imino-fi-demethyl-f-decoxptetracyeline (IV or V)

[^4]in methoxyethanol muder restricted pH ronditions ming 10 , patledimu-ot-charcoal catalyst at atmosfheric prowner. save 7 - or e-dimethyminco-fi-

\[

$$
\begin{aligned}
& \text { I, } R=R^{\prime}=R^{\prime \prime}=H \\
& \text { II, } R=\mathrm{NO}_{2} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} \\
& \text { III, } \mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{NO}_{2} \\
& \text { IV, } R=\mathrm{NH}_{3} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} \\
& \text { V, } R=R^{\prime \prime}=H ; R N^{\prime} H_{2} \\
& \text { VI, } R=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} \\
& \text { VII, } R=R^{\prime \prime}=H ; R^{\prime}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} \\
& \text { VIII, } R=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N} ; \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{~N}^{\prime} \\
& \text { IX, } R=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H}
\end{aligned}
$$
\]

demethyl-i-deoxyteracyctine (VI or VII) and their t-epimers. These compounds coutd be purified using liquid-lifuid partition chromatography on neutral (acid-wathed) distomaceons cauth. The rewertion was

[^0]:

[^1]:

 17: (!!iv!)

[^2]: (6) I. S. Johnson, et ml., Cancet Res., 20, 1016 (1960).
 (i) Emulphor ${ }^{8}$ is a polyoxyethylated fatty acid ayailable from General Aniline Film Corp., Melrose Park, III.

[^3]: (8) All melting points were determined using a Mel-Temp melting point apparatus and are uncorrected.
 (9) K. Campbell, B. Campbell, and L. Fby, I. Am. Chem. Sor., 60, 2882 (1938).

[^4]:

 ©. I. J. Harka, A. Smmeller, H. Kraginski, anll J. H. Hoothe, ibini. 84,

